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The problem of studying the quantum Hall effect on manifolds with non constant metric
is addressed. The Hamiltonian on a space with hyperbolic metric is determined, and the
spectrum and eigenfunctions are calculated in closed form. The hyperbolic disk is also
considered and some other applications of this approach are discussed as well.
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1. INTRODUCTION

The problem of investigating the quantum Hall effect (QHE) on different
types of manifold has been of great interest recently. Some of the previous work
in this area originated in the course of generalizing the Hall current from the
SO (3) two-sphere S2 to the four-sphere S4 of the invariance group SO (5) (Zhang
and Hu, 2001). Quantum Hall droplets have been considered as well on complex
projective spaces CPd (Karabali and Nair, 2002, 2004). The idea all along has been
to generalize the Landau problem on different types of higher dimensional spaces.
This kind of work combines the study of several important areas in mathematics
and physics.

Zhang and Hu (2001) considered the Landau problem for charged fermions
on S4 under the influence of a background magnetic field which is related to the
standard SU (2) instanton. In ordinary quantum Hall effects, a droplet of fermions
occupying a certain region behaves as an incompressible fluid, a characteristic
property of the QHE, the low energy excitations being area-preserving deforma-
tions which behave as massless chiral bosons. Some work on chiral boson theories
related to the QHE has been described in Bracken (2001). Now S4 may be con-
sidered since the edge excitations could lead to higher spin massless fields, in
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particular, the graviton. The original work of Hu and Zhang (2002) has been con-
tinued to include the QHE on even-dimensional complex projective spaces CPk ,
for example. This is interesting since one can obtain incompressible droplet states
by coupling the fermions to a U (1) background field.

The Landau problem has been of fundamental importance to the QHE from
the beginning (Ezawa, 2000; Khare, 2005). The main aim here is to consider gener-
alizations of the QHE to spaces with nonflat metrics by considering Hamiltonians
of the Laplace-Beltrami form. For example, the spectrum of the Laplacian on
the ball Bd in different dimensions has been investigated. Of interest here will
be the generalization of the Landau problem on the plane to the case of spaces
with non-constant metrics. The Hall conductance can be thought of as a type of
curvature, and it would be useful to understand this relationship more thoroughly
and in other frameworks. We begin by introducing a classical model of a charged
particle in a magnetic field on the hyperbolic plane (Comtet, 1987). The metric in
this case is diagonal but non-constant. Next the quantum version of the Landau
problem on the plane will be reviewed for the sake of completeness, and most of
the important results will be derived (Chandelier et al., 2004; Iengo and Li, 1994;
Jellal, 2005). The quantized version for the related problem under a diagonal but
non-constant hyperbolic metric will be formulated next. The Hamiltonian can be
derived by making use of the Laplace-Beltrami operator for a particle of mass m

on a manifold with metric gij under a monopole field. A separation of variables
solution can be obtained and the associated eigenvalues and eigenfunctions for
this differential equation can be written down explicitly. The same problem can
then be formulated from the Lie algebraic point of view as well. The Hamiltonian
can be expressed in terms of the relevant Casimir operator, and the energies can
be obtained in this way as well. Some interesting observations with regard to the
operator ordering question for the Hamiltonian as well as the underlying symmetry
vector fields can be made. Finally, this will be repeated for the case of formulating
a Hamiltonian for the hyperbolic disk.

2. CLASSICAL LAGRANGIAN FORMULATION
IN A HYPERBOLIC SPACE

Before investigating the quantum dynamics of a charged particle under the
influence of a magnetic field in a space with a non-constant metric, it is worth
reviewing the classical formulation of the dynamics of a charged particle in a
space with a hyperbolic metric. Consider dynamics then on the upper half of the
complex plane, the Poincaré plane defined by,

H = {z = x + iy ∈ C, y > 0}. (2.1)
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The metric on this space can be written as

ds2 = a2

y2
(dx ⊗ dx + dy ⊗ dy). (2.2)

The scalar curvature for this space is a negative constant K = −2/a2. A
constant magnetic field can be obtained from a vector potential in the plane given
by

A =
(

−β

y
, 0

)
, β = Ba2. (2.3)

The quantity β defined in (2.3) is frequently referred to as the rescaled field.
The Euler-Lagrange equations which determine the classical trajectories of a

charged particle in the field generated by A can be determined from the Lagrangian

L = a2

y2
(ẋ2 + ẏ2) − β

ẋ

y
. (2.4)

The differentiation in (2.4) is with respect to the time variable. The Hamilto-
nian is determined from L by means of

H =
N∑

r=1

pr q̇r − L, (2.5)

where

px = p1 = ∂L

∂ẋ
= 2a2

y2
ẋ − B

y
a2, py = p2 = ∂L

∂ẏ
= 2a2

y2
ẏ. (2.6)

Solving this pair individually for ẋ and ẏ, the results are substituted into (2.5) to
obtain

H = pxẋ + pyẏ − a2

y2
(ẋ2 + ẏ2) + β

ẋ

y

= px

(
y2

2a2
px + y

2
B

)
+ py

y2

2a2
py − a2

y2

(
y2

2a2
px + y

2
B

)2

− y2

4a2
p2

y + β

y

(
y2

2a2
px + y

2
B

)

= 1

4a2

{
y2

(
p2

x + p2
y

) + 2βypx + β2
}
. (2.7)

Constants of the motion are determined by Noether’s theorem and are given
by

L1 = xpx + ypy,

L2 = py,

L3 = (y2 − x2)px − 2xypy + 2βy. (2.8)



122 Bracken

Classically the relative order of each of the factors in the Lj in (2.8) is
irrelevant. Thus, by direct calculation, it follows that

L2L3 + L2
1 = y2

(
p2

x + p2
y

) + 2βypx.

By comparison with (2.7), it follows that

H = 1

4a2

(
L2L3 + L2

1 + β2
)
. (2.9)

By resorting to Hamiltonian (2.7), Hamilton’s equations can be formulated
directly as

ẋ = ∂H

∂px

= 1

2a2
(y2px + βy), ẏ = ∂H

∂py

= y2

2a2
py,

ṗx = −∂H

∂x
= 0, ṗy = −∂H

∂y
= 1

2a2

(
y
(
p2

x + p2
y

) + βpx

)
. (2.10)

The Poisson bracket of any two classical functions F and G is given by

{F,G} =
N∑

r=1

(
∂F

∂qr

∂G

∂pr

− ∂F

∂pr

∂G

∂qr

)
. (2.11)

By straightforward differentiation of the Lj in (2.8), it can be verified that,
with the canonical Poisson bracket, the Lj given in (2.8) generate an sl(2, R) Lie
algebra

{L1, L2} = L2, {L1, L3} = −L2, {L2, L3} = 2L1. (2.12)

Eliminating px and py from (2.8), the classical path can be determined, and
with respect to the Euclidean plane, it describes a circle.

3. QUANTUM PROBLEM IN THE PLANE

The dynamics of a charged particle in the plane under the influence of an
external uniform magnetic field B which is oriented at right angles to the plane
will be studied first. This will provide a setting in which to introduce the QHE as
well. It will be useful here to frequently use complex coordinates z and z̄ defined
by z = x + iy and ∂ = ∂/∂z and ∂̄ = ∂/∂z̄. The gauged Hamiltonian is usually
written in the form

H = 1

2m

(
p − e

c
A

)2
. (3.1)

In the symmetric gauge and formulated in terms of complex z and z̄, (3.1)
can be written

H = −2h2

m
∂̄∂ + mω2

0

8
|z|2 − hωc

2
(z∂ − z̄∂̄), (3.2)

where ωc = e|B|/mc is the cyclotron frequency.
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Introduce two quantum operators a and a† defined by,

a = −2i

√
h

2mωc

(
∂̄ + mωc

4h
z
)

, a† = −2i

√
h

2mωc

(
∂ − mωc

4 h
z̄
)

. (3.3)

Using these, we calculate

aa† − a†a = 1, (3.4)

and

hωc

2
(aa† + a†a) = −2h2

m
∂∂̄ − hωc

2
(z∂ − z̄∂̄) + 1

8
mω2

c |z|2. (3.5)

Therefore, in terms of the operators defined by (3.3), we can write

H = 1

2
h ωc(2a†a + 1). (3.6)

Now a†a can be interpreted as a number operator, thus defining a number
basis |n〉, the energy spectrum of H is given by

En =
(

n + 1

2

)
hωc, n = 0, 1, 2, . . . . (3.7)

The Landau levels En are degenerate with respect to the center of Larmor’s
circular orbits. Corresponding eigenfunctions are obtained from the ground state
eigenfunction as

|n〉 = (a†)n√
n!

|0〉, (3.8)

where the ground state |0〉 obeys the equation

a|0〉 = 0. (3.9)

Substituting a from (3.3), this implies a first order equation for the ground
state function given by (

∂

∂z̄
+ mωc

4h
z

)
ψ0(z, z̄) = 0. (3.10)

This equation has the general solution

ψ0(z, z̄) = f (z) exp

(
−|z|2

4z2
0

)
, (3.11)

where z0 = √
hc/eB.
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The Hamiltonian in (3.2) can be generalized to a many-particle system de-
scribed by the total Hamiltonian

H =
N∑

i=1

{
−2h2

m
∂̄i∂i − hωc

2
(zi∂i − z̄i ∂̄i) + mω2

c

8
|zi |2

}
. (3.12)

Suppose we consider N -particles in the lowest Landau level, which means
that the quantum numbers satisfy ni = 0 with i = 1, 2 . . . , N and each ni corre-
sponds to the spectrum of (3.6). The total wavefunction can be written in terms of
the Slater determinant

�(z, z̄) = εi1...iN z
n1
i1

. . . z
nN

iN
exp

(
−

N∑
i=1

|zi |2
4z2

0

)
, (3.13)

where εi1...iN is the fully antisymmetric tensor and the ni are integers. Expanded
as a Vandermonde determinant, we have

�1(z, z̄) = K
∏
i,j

(zi − zj ) exp

(
−

N∑
i=1

|zi |2
4z2

0

)
. (3.14)

This can be compared with the Laughlin wavefunction given by

�m(z, z̄) = Km

∏
i,j

(zi − zj )m exp

(
−

N∑
i=1

|zi |2
4z2

0

)
. (3.15)

This matches (3.14) when m = 1 and is a good ansatz to describe the frac-
tional QHE at the filling factor ν = 1/m.

Let us mention that the filling factor in units such that he/c is one can be
written as

ν = 2πN
B

, (3.16)

where N is the density of particles

N = N

S
,

and S is the plane surface area. In the QHE, ν in (3.16) must be quantized and
reads

ν = N

Nφ

. (3.17)

This can be either an integer or fractional depending on which kind of effect is
involved and Nφ is the quantum flux number. Thus, the magnetic flux is quantized
here.



Hamiltonians for the Quantum Hall Effect on Spaces with Non-Constant Metrics 125

4. THE QUANTUM PROBLEM IN A HYPERBOLIC GEOMETRY

A single particle quantum Hamiltonian can be developed for the Poincaré
half-plane. It can be derived from the electromagnetically gauged form of the
Laplace-Beltrami operator, such that the contribution of the vector potential has
been included. In this section, units are taken such that h = c = e = 1. If the
particle has a mass m on a space with metric gij , the operator can be written as

HLB = 1

2m
√

g
(p − A)i(

√
ggij )(p − A)j , (4.1)

where g in (4.1) is the determinant of the metric, gij the inverse of gij , and we
follow de Witt’s prescription (De Witt, 1957) such that the covariant derivative
p contains a contribution which is directly related to the metric. The metric for
the space which is of interest here is given by (2.2), and the gauge is fixed by
taking the vector potential in the plane to have the form (2.3). From the form
of the metric, it is clear that

√
g = a2/y2 and the inverse metric has elements

which are the reciprocals of those in gij . When the metric has diagonal form, the
Laplace-Beltrami operator takes the classical form

HLB = y2

2ma2

(
P 2

1 + P 2
2

)
, (4.2)

where the momenta Pj are gauged with the electromagnetic contributions due to
a nontrivial vector potential, which can be written

Pj = pj − Aj . (4.3)

When HLB is quantized, the form for HLB given in (4.2) could be adopted,
or the operators y could be placed in a different order

HLB = 1

2ma2
y
(
P 2

1 + P 2
2

)
y, (4.4)

or even with the factor of y2 placed entirely to the far right of the operator. These
different cases just correspond to the usual operator ordering ambiguities which
arise during quantization. Some remarks related to this will be made later.

To finish the canonical quantization procedure following de Witt’s prescrip-
tion, the momentum operators pj have to be constructed, and these contain a
contribution which is related to the metric determinant g, and are given as follows

p1 = px = −i
(
∂x + 1

2∂x ln
√

g
) = −i∂x,

p2 = py = −i
(
∂y + 1

2∂y ln
√

g
) = −i∂y + i

y
.

(4.5)
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Substituting pj given in (4.5) into the Hamiltonian (4.4), we obtain that

HLB = 1

2ma2
y

{(
−i∂x + β

y

)2

+
(

−i∂y + i

y

)2
}

y, (4.6)

and β is defined in (2.3). Expanding the terms in this operator out in full, we find

y

(
−i∂x + β

y

)2

y = −y2∂2
x − 2iβy∂x + β2,

y

(
−i∂y + i

y

)
(−i∂yy + i) = −iy

(
−i∂y + i

y

)
y∂y = −y2∂2

y .

(4.7)

Therefore, the Hamiltonian (4.4) takes the form,

HLB = 1

2ma2

{−y2
(
∂2
x + ∂2

y

) − 2iβy∂x + β2
}
, (4.8)

and the associated eigenvalue problem takes the form

HLB� = E�. (4.9)

Just as in the case of (4.4), the three constants of the motion Lj in (1.6) are also
determined up to ordering ambiguities as well. The exact form of the operators
can be established in this case by using them to establish a particular Lie algebra
structure such that the associated Casimir operator matches the Hamiltonian (4.8)
up to constant terms. In this case remarkably, combining these approaches seems
to be sufficient to eliminate the ordering ambiguities, that is, the ordering given in
the quantum form of the Lj is the one which matches (4.4), and the other cases
for the Lj and HLB with y in different orientations will not coincide under this
procedure. Consider the following form for the operators Lj ,

L1 = −i∂x x + y

(
−i∂y + i

y

)
,

L2 = −i∂x,

L3 = −i ∂x (y2 − x2) − 2xy

(
−i∂y + i

y

)
+ 2βy. (4.10)

Moving all the operator terms to the right-hand side of the variables by
expanding out, these become

L1 = −i(x ∂x + y ∂y),

L2 = −i∂x,

L3 = −i(y2 − x2) ∂x + 2ixy∂y + 2βy. (4.11)
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The calculations which can easily be carried out by using MAPLE (Char
et al., 1991) have been done this way. It is found that the operators in (4.11) satisfy
the following commutation relations

[L1, L2] = iL2, [L1, L3] = −iL3, [L2, L3] = 2iL1. (4.12)

The following combinations of the operators Lj can be written down

J0 = 1

2
(L2 − L3), J1 = 1

2
(L2 + L3), J2 = L1. (4.13)

If the Lj satisfy (4.12), it is easy to show using the properties of the commu-
tator that the Ji defined in (4.13) satisfy the canonical form of the su(1, 1) algebra
described by the commutators (Barut and Raczka, 1986; Chen et al., 2002)

[J0, J1] = iJ2, [J0, J2] = −iJ1, [J1, J2] = −iJ0. (4.14)

The Casimir operator which corresponds to these operators under this algebra
is given by

C = J 2
0 − J 2

1 − J 2
2 . (4.15)

Using (4.13), this can be written in terms of the Lj as follows

C = −L2L3 − L2
1 + iL1. (4.16)

Again, by direct calculation, it can be verified using (4.11) that

−C = L2L3 + L2
1 − iL1 = −y2(∂2

x + ∂2
y

) − 2iβy∂x.

Hence in terms of the Casimir operator C, the Hamiltonian (4.8) can be
written in the equivalent form

HLB = 1

2ma2
(−C + β2). (4.17)

The spectrum of HLB can be obtained from the representation theory that
corresponds to the operator C. Consider a unitary, irreducible representation of
the group as eigenstates of C as well as the compact generator J0. Let us choose
a basis |j,m〉 such that

C|j,m〉 = j (j + 1)|j,m〉, (4.18)

and where m is an eigenvalue of J0,

J0|j,m〉 = m|j,m〉. (4.19)

Using (4.17), the effect of the Hamiltonian on |j,m〉 can be determined

HLB |j,m〉 = 1

2ma2

(
β2 − j (j + 1)

)|j,m〉. (4.20)
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Substituting into eigenvalue problem (4.9), and taking j = l − b where l is an
integer, the energy eigenvalues can be expressed in the form,

Eβ,l = 1

2ma2

(
β2 + 1

4
−

(
l − β + 1

2

)2)
. (4.21)

It will be useful to compare the result in (4.21) with that obtained by solv-
ing the eigenvalue problem (4.9) in differential form. Consider now (4.10) with
HLB given by (4.8). Let us consider obtaining a class of solutions which have a
separation of variables form

�(x, y) = α(x)ϕ(y). (4.22)

Substituting (4.22) into (4.9), the differential equation takes the form

−y2

(
αxx

α
+ ϕyy

ϕ

)
− 2iβy

αx

α
+ β2 − 2ma2E = 0. (4.23)

To decouple the x and y variables in (4.23), let us require that αx = −icα,
where c is a real, positive constant hence we take

α(x) = e−icx . (4.24)

The appearance of the imaginary unit in the exponential reduces the equation
entirely to real form. Substituting (4.24) into (4.23), we obtain an equation in
terms of ϕ

ϕyy

ϕ
− c2 + 2βc

y
+ 1

y2
(−β2 + 2mE) = 0. (4.25)

Introducing the variable to s = 2cy and setting −β2 + 2mE = 1
4 − n2,

Eq. (4.25) takes the form of a Whittaker equation

ϕ′′

ϕ
− 1

4
+ β

s
+ 1

s2

(
1

4
− n2

)
= 0, (4.26)

such that the energies are related to n through

En = 1

2ma2

(
1

4
− n2 + β2

)
. (4.27)

The general form for the solutions to (4.26) can be written in terms of the
confluent hypergeometric function

Mβ,n(s) = e−s/2s1/2+n
1F1

(
1

2
+ n − β; 1 + 2n; s

)
,

Mβ,−n(s) = e−s/2s1/2−n1F1

(
1

2
− n − β; 1 − 2n; s

)
. (4.28)



Hamiltonians for the Quantum Hall Effect on Spaces with Non-Constant Metrics 129

If n is taken such that n = β − l − 1
2 , where l is chosen to be an integer such

that 0 ≤ l < β − 1
2 , the confluent hypergeometric function in Mβ,n will truncate to

the form of a Laguerre polynomial (Andrews et al., 1999; Luke, 1969). Moreover,
Mβ,n(2cy) is defined at y = 0 and square integrable in y on the domain (2.1).
The connection between the hypergeometric function and Laguerre polynomial is
provided by

L(τ )
n (z) = (τ + 1)n

n!
1F1(−n; τ + 1; z).

Substituting this into Mβ,n(s) in (4.28), the eigenfunctions of (4.9), up to a
normalization constant can be written in the form

�(x, y) = N e−icx−cyyβ−lL
2β−2l−1
l (2cy), (4.29)

and the energies are given by (4.27) with n = β − l − 1/2 as,

Eβ,l = 1

2ma2

(
β2 + 1

4
−

(
l − β + 1

2

)2)
. (4.30)

These results for Eβ,l can be compared with the expression given in (4.21).
Note that (4.8) can be written in complex form as well

HLB = 1

2ma2
{(z − z̄)2∂̄∂ − β(z − z̄)(∂ + ∂̄) + β2}. (4.31)

For equal mass particles, (4.31) can be generalized to the case of a many-
particle system as was done in (3.12) to give the Hamiltonian

HLB = 1

2ma2

N∑
i=1

[(zi − z̄i)
2∂̄i∂i − β(zi − z̄i)(∂i + ∂̄i) + β2]. (4.32)

5. RESULTS FOR OTHER GEOMETRIES AND CONCLUSIONS

A Hamiltonian will be developed using the method described in the last
section for a system on the hyperbolic disk B

1
ρ , which is defined to be

B
1
ρ = {w = x + iy ∈ C||w|2 < ρ2}, (5.1)

which carries the Bergman-Kähler metric

ds2 =
(

1 − |w|2
ρ2

)−2

(dx ⊗ dx + dy ⊗ dy), (5.2)

where |w|2 = x2 + y2, so the metric is again diagonal. Define the function

φ(x, y) = 1 − x2 + y2

ρ2
, (5.3)
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and clearly
√

g = φ−2 in this case. To write a Hamiltonian on B
1
ρ , we work out

(4.1) with the metric (5.2) and take a vector potential with two components which
is defined everywhere on (5.1). For x and y such that |w|2 < ρ, then with B the
magnetic field in a symmetric gauge let

A = B(y,−x). (5.4)

Using the definitions in (4.5), the vector potential is specified by

px = p1 = −i

(
∂x + 2x

ρ2φ

)
, py = p2 = −i

(
∂y + 2y

ρ2φ

)
. (5.5)

Therefore, substituting (5.4) and (5.5) into (4.1), we have

H = 1

2m
φ2

((
−i∂x − 2ix

ρ2φ
− By

)2

+
(

−i∂y − 2iy

ρ2φ
+ Bx

)2
)

= φ

2m

{
− φ

(
∂2
x + ∂2

y

) − 4

ρ2
(x∂x + y∂y) + 2iBφ(y∂x − x∂y)

+B2φ − 4

ρ2

(
1 + 2|w|2

ρ2φ

) }
. (5.6)

As a last application of geometrical methods to generating Hamiltonians
for this area, consider the approach proposed by Haldane (1983) to overcoming
the symmetry problem in the Laughlin theory of the fractional QHE described
by wavefunction (3.15) at the filling fraction ν = 1/m. To phrase the problem
more precisely, (3.15) is rotationally invariant due to angular momenta, but it is
not translationally invariant. By considering particles living on a two-sphere in a
magnetic monopole, Haldane formulated a theory that has all the symmetries and
generalizes the Laughlin proposal.

The link with the two-sphere S2 can be done by means of the following
approach. First S2 can be realized on the disk

∂B
1
ρ = S2 = {w ∈ C||w| = ρ},

which is the boundary of B
1
ρ , and the basic features of B

1
ρ lead to those of S2. The

space H is invariant on the symmetric space SU (1, 1)/U (1) and the projective
space CP1 can be obtained as

CP1 = SU (2)/U (1).

The S2 can be regarded as an analytic continuation of SU (1, 1) to SU (2).
This suggests that the spectrum obtained on B

1
ρ is similar to the Landau problem

on the sphere, except that the eigenfunctions should be invariant under the group
U (1).
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The CP1 expression shows that functions on S2 can be thought of as functions
of SU (2), invariant under the U (1) subgroup. A basis of functions for SU (2) is
given by the Wigner D-functions, and a basis for functions on S2 is given by
the SU (2) Wigner functions D

(j )
L3R3

(g) with trivial right U (1) action, that is, the
U (1)R charge R3 = 0. Derivatives on S2 can be identified as SU (2) right rotations
SU (2)R , which satisfy an SU (2) algebra. Consequently, covariant derivatives D±
can be written as

D+ = 1

ρ
L2, D− = 1

ρ
L3. (5.7)

The operators in (5.7) must satisfy the commutator bracket

[D+,D−] = −B

2
. (5.8)

Defining k = Bρ2/2 and substituting (5.7) into (5.8), the commutator and
covariant derivatives fix the eigenvalue of L1 to be

L1 = i

2
k. (5.9)

A Hamiltonian can be written down in terms of the D± as follows,

H = −(D+D− + D−D+) = − 1

ρ2
(L2L3 + L3L2) = − 2

ρ2
(L2L3 − iL1).

(5.10)
This can be written in terms of the Casimir operator (4.15) using L2L3 =

−C + iL1 − L2
1 in the following way

H = 2

ρ2

(
C + L2

1

)
. (5.11)

Using the representation theory in which the eigenvalues of C are j (j + 1)
and j is taken to be j = l − k/2, the associated spectrum of (5.11) is

El = 2

ρ2

[(
l − k

2

)(
l − k

2
+ 1

)
− k2

4

]
. (5.12)

It is clear that this geometric approach yields useful results both in the nature
of fundamental evolution equations and predictions for the trajectories in the
classical case, as well as predictions for the energy spectrum and wave functions
in the quantum problem. It will also be of interest to extend the work in this study
to problems in higher dimensions, and to consider the existence of other classes
of solutions to the equations, such as soliton solutions.
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